A GKS-BASED MICROCOMPUTER GRAPHICS PACKAGE
FOR URBAN AND REGIONAL ANALYSIS AND PLANNING

Michael WEGENER

Department of Civil Engineering
University of Tokyo
7-3-1 Hongo, Bunkyo-ku
Tokyo 113, Japan

Klaus SPIEKERMANN

Department of Spatial Planning
University of Dortmund
Postfach 50 05 00
D-4600 Dortmund, West Germany

ABSTRACT

The graphics package described in this paper provides an
integrated programming environment for IBM XT/AT compatible mi-
crocomputers based on the WATFOR-77 compiler of the University
of Waterloo, Canada, and its implementation of the Graphical
Kernel System (GKS) graphics standard. The package consists of
a library of more than seventy FORTRAN77 subroutines which form,
in the GKS terminology, an 'application layer’ between the graph-
ical primitives of GKS and a multitude of planning-related tasks
of spatial analysis and presentation ranging from simple line
draws and polygon fills to complex three-dimensional transforma-
tions of spatial data.

INTRODUCTION

"Solving a problem simply means representing it so as to
make the solution transparent.”

Herbert A. Simons: "The Sciences of the Artificial", 1969

A large part of all scientific work consists of presenting
a problem in a different way. Just as in mathematics a result is
derived through a sequence of transformations, so in other disci-
Plines a conclusion follows from an appropriate presentation of
facts. In both cases the object of investigation is not changed
but brought into a form suitable for new insight.

This is particularly true for urban and regional planning,
where diagrams, maps and other graphical representations tradi-
tionally are indispensable for demonstration and communication.
Unfortunately their manual preparation requires great effort,
time and cost.

Microcomputers with their rapidly developing graphics capa-
bilities have the potential for efficiently generating sophisti-
cated graphical representations at little cost. However, there
exist no graphics software specifically addressing the needs of

urban and regional planners. As the microcomputer revolution is
deeply transforming the world of business and commerce, the world
of the urban and regional planner is still sadly lagging behind.
Too small a market for profitable software development, the writ-
ing of planning software remains largely left to non-professional
programmers such as graduate students, researchers or the plan-
ners themselves, and more often than not on a minimum budget.

It was with this target group in mind that the program pack-
age described in this paper was designed. It provides an inte-
grated programming environment for IBM XT/AT compatible microcom-
puters based on the WATFOR-77 compiler of the University of
Waterloo, Canada, and its implementation of the Graphical Kernel
System (GKS) graphics standard. The package consists of a library
of more than seventy FORTRAN77 subroutines which form, in the GKS
terminology, an ’application layer’ between the graphical primi-
tives of GKS and a multitude of planning-related tasks of spatial
analysis and presentation ranging from simple line draws and
polygon fills to complex three-dimensional transformations of
spatial data.

The embedding of graphics functions into the traditional
programming language of geographers and planners distinguishes
the package from stand-alone graphics packages and makes it par-
ticularly suited for immediate visualization of the results of
computations such as simulations. Its minimal hardware require-
ments facilitate its application in planning education and in
decentralized work environments.

In the paper an overview of the functions supplied by the
subroutine package is illustrated by demonstration programs. In
addition, examples of typical applications such as demography,
migration analysis, transportation and digital terrain modelling
are shown.

THE GKS GRAPHICS STANDARD

There are several ways to produce computer graphics. Each
of them has its advantages and disadvantages:

(1) General-purpose graphics packages such as MS-Chart, Harvard
Graphics or Autocad do not require the user to have program-
ming skills, but are restricted by their built-in possibili-
ties; no individual designs are possible. In addition, these
programs are only good for drawing; any prior processing of
the data has to be done in a separate program.

(2) Graphics commands of computer languages such as GW-Basic or
Turbo-Pascal permit the immediate visualization of computa-
tions, which is invaluable if alone for debugging. However,
there is so far no standardization of the graphics syntax of
these languages, which greatly reduces the portability of
such programs.

{3) Graphics standards are aimed at establishing a standardized
interface between any graphics hardware and any computer lan-
guage. The idea is that the interface translates a graphics
command into appropriate hardware instructions depending on

8o

the nature of the graphics device available thus freeing the
user from considerations of technical detail. GKS (Graphical
Kernel System) is the first international graphics standard.
There exist conventions for calling GKS from Fortran, Pascal,
Ada, and C. GKS is described in Enderle et al., 1987 and En-
carnacao and Strasser, 1988.

The program package described in this paper uses the third
approach by applying GKS together with Fortran. The reasons for
choosing Fortran are as follows: Fortran is traditionally the
computer language of geographers and planners and is continuously
being revised in order to keep up with new developments. There
are several implementations of GKS imbedded in Fortran available
for microcomputers, workstations, minis and mainframes.

Figure 1 shows how e
Fortran, GKS and the
computer hardware work /s User Program
together. The GKS soft-
ware is a set of proce-
dures, consisting of
graphical primitives and
hardware drivers for
different types of hard-
ware {or ’'GKS worksta-
tions’). The graphical
primitives are called as
functions or subroutines 5 GKS Graphical Primitives
from the Fortran pro-
gram. However, as each
of them performs only N /T\
one elemental function,) _ -
programming in GKS di- GKS Workstation Drivers
rectly involves a great 5 —i
number of calls. There- AN AN
fore it is convenient to NS 1
combine several GKS ‘ N
calls that frequently Display \ /
occur together in a par- 2 Laser Printer /3
ticular applicationinto /- Al
one macro routine per- / \ \ /
forming a higher-order Keypoard T
more complex function.

ZDAO-—H200™M

T RO

A set of such routines GKS Workstations

is called an ’applica-

tion layer’ in the GKS Figure 1. GKS and Fortran.
terminology.

The program package described here is such an application
layer. It consists of over seventy subroutines written Fortran77
using the Fortran calling conventions for GKS. It should with
minor modifications run on any computer for which a Fortran com-
piler and a GKS implementation exist. However, presently only the
WATFOR-77 compiler developed at the University of Waterloo, Cana-
da, for IBM XT/AT and compatibles (Coschi and Schueler, 1985,
1986) and its implementation of GKS, WATCOM GKS (Yach, 1986),
have been tested.

The WATFOR-77 compiler for IBM XT/AT and compatibles sup-
ports the full Fortran77 standard, has a good editor and an ex-
cellent debugger, and produces code that is among the fastest in
the field (Voglewede, 1987). It can make use of an arithmetic
8087/80287 coprocessor. Normal operation of the compiler is com-
pile-and-go, but it can produce executable load modules which,
however, are quite large.

The present Version 1.3 of WATCOM GKS corresponds to Oa, the
lowest performance level of GKS. There are no pointing devices
such as mouse or light pen nor are there segments by which one
can manipulate designated picture elements. Device drivers exist
for CGA, Hercules, EGA and VGA displays and 9-pin matrix print-
ers. Printer output can be generated in three ways (Figure 1):
Output to a 9-pin matrix printer can be produced by the existing
GKS driver (1) or as hardcopy (Shift-PrtScr) from monochrome or
Hercules displays (2). Output to a 24-pin matrix printer or a
laser printer is presently possible only by sending the display
memory as hardcopy to the printer by a user-written driver (3).
This driver does not utilize the much higher resolution of these
printers and should therefore as soon as possible be replaced by
a true GKS driver (1). All illustrations in this paper were pro-
duced on a laser printer using this method.

THE MACRO LIBRARY

The main objective in developing the program package was to
provide routines for the graphical tasks most frequently encount-
ered in the preparation of research papers, research reports or
student theses in the field of urban and regional analysis and
planning requiring as little programming by the user as possible
and using the least expensive and most commonly available hard-
ware. These objectives led to the following design principles:

- Self-contained procedures. Unlike in GKS where there are sep-
arate routines for setting parameters such as line type or area
fill pattern, all parameters necessary for a routine are set
explicitly in the calling statement.

- Restraint in using color. Although today color monitors are
widely available, color printing is still expensive. Therefore
techniques which distinguish graphical elements by line type,
line width or shading pattern rather than by color were pre-
ferred. However, use of color with color monitors is possible.

- Use of raster techniques. For simplicity, heavy use was made of
the possibilities of raster technology to overwrite and to OR,
XOR or AND picture elements. Consequently, the procedures using
such techniques are not suitable for pen plotter output.

Figures 1 to 5 show output of demonstration programs written
to illustrate the graphical techniques made available by the sub-
routines. Figure 1 contains the basic elements: the default win-
dow {a), point/line drawings such as dots, lines, polylines,
circles, ellipses, etc. (b), markers (c), area fills and shadings
(d), thick lines (e) and fonts (f).

gsis

2.825;0.5 d pestmeseateey

| ; i
| i ;
1 ! '
bc\) 1 i B
o ! Vi i ;
& bevocieoaanns ! i
X 8,0,1,8 1,0,8,0 2,0,0,0 3,0,0,0 4,0,0,3 G1,1,8
V"& Y-Achse
0,1,2,) 0,1,2,2 0,1,2,3
X-Achse \\‘
; \\\ \\\\\ \\\\\
\
01,30 0,1,3,3 0- .3|S
u x 4, s
9.5%5;4.5 0.§25;-0.%
0,1,5,! 0,1,5,2 0,0,5,3 0,1,5,4 0,1,5,5
11,4,0,1,0 2,1,8,1,0 33,1,0,4,0 144,1,0,1,0 155,1,0,1,0 lSS,H)IO
11,0,1,1,0 22,0,1,1,0 13,0,1,1,0 144,0,1,1,0 185,0,1,1,0 186,0,1, 1,8

0.8 0.3
1
2 + +
3 »* *
4 =] Q
5 X X
B © o
7 o o]
3 a a
9 a fay

Figure 2.

1.0 1.2 4 1.8
+ + + +
¥ ¥ X ¥
o 0O O 0O
X X X X
o O O O
o o 0O O
o o o (O
A A A A

Basic elements of the macro subroutines:
point/line draws such as dots, lines, polylines, circles, ellipses, etc.

>0 0 S X O XK+

>0 O XOXK -+

1,1,4,2,4 2,1,1,2,4

3,0,1,2,4

144,1,1,2,4 185, 8,1,2,4 188,1,1,2,4

144,9,1,2,3

11,0,1,2,3 2,0,1,2,3 13,0,1,2,3 185,0,1,2,3 186,8,1,2,3
WRITE WRTE
ABCDEFGH] JXLINOPYRSTIAMAYZ ABCDEFGHT JXLINOPERSTUMAYZ
abcdefghi jklmnopqrstnanyz abcdef ghijk imnopqrstuvixyz
8123456789 8123456789
§ 1B Ont,=/05(07. § 1B O,= /()0
g 7EY
TEXT | TUWRTART T gTUYHNE &
s el ﬂl‘:ﬂfiﬁwmﬂ"“’ BCPETG xJ%:? ustuwwuw?
ey P
;bcd“'qh” el abchSh‘ "
56789 Lt §783 T ée
:%34;‘;' gemd gleggi/ (IR, e
KT 2 fuwiri ; Tyvxel
gpers TEXT 2 KOPORS
sacotti itn»""""'m aacaef 8 Ko qrs tuvvar®
uc“ ";!‘ qbcde(gmé' 51
g,zw‘ 2N 0123458 PR ARASIAE
ey O+ ‘"9‘%&, }H.
GOTHICS saTHICa

ABCOEFGH 1 JXKLNNGPQR STYVHXY 2A0G
abedefohijkinnapgrstuvexyzidis
0123458789

§ 00 O34, 1507 D

ABCOEFGH I JKLANGPORSTUUNXYZRTO
abcdefghijkimnoparstuvnxyz3ddus
0123456789

§ [T387g" (as,-./1;(=)7 ge1?

the default window (a},
(b),

markers (c}), area fills and shadings (d), thick lines (e) and fonts (f).

Area fill subprograms exist
for arbitrary polygons as well as for
boxes, frames, disks, wedges and
rings, which when overlaid can pro-
O 3 duce a large variety of patterns

LAY
AV Y

(Figure 3). One subroutine draws all
sorts of arrows (Figure 4).

A separate group of subprograms
deals with three-dimensional repre-
sentations. The general idea is to
establish a three-dimensional coord-
inate system or 'workbox’ in which it
is possible to draw using 3D-versions
of the point/line and area fill sub-
routines familiar from two~-dimension-
al drawing., Simple algorithms for
hidden line removal are available.
Figure 5 shows the three-dimensional
workbox as wire~-frame (a), as cube
with hidden lines removed (b) and as
open box with a ramp inside (c¢). Fig-
Figure 3. Boxes, frames, disks, ure 6 compares two ways to represent
wedges and rings. surfaces: The raster scan technique
(a) permits the axonometric represen-
tation of mathematical functions of
X and y with hidden line removal., If
the data are available for regularly
spaced grid points, any surface can
be displayed three-dimensional in
true perspective (b).

Other macro subroutines not il-
lustrated by the demonstration pro-
grams include printer and video con-
trol macros, macros to read and write
bit images ('pictures’) from the dis- -
play to disk and vice versa, macros
to generate device independent grap-

el hics files (’metafiles’'), and a num-
A ber of helpful utilities facilitating

Figure 4. Just arrows. sorting and recurrent geometrical
calculations.

The two following pages show the full set of macro subrou-
tines and their calling syntax in the form of reference cards
(Figure 7). The parameter names follow Fortran conventions, i,e,
names beginning with i, j, k, 1, m or n indicate a parameter of
type INTEGER. Parameter names printed in bold indicate arrays,
underlined parameters are output parameters.

The explanation of the function(s) performed by the macros
and the meaning of their parameters are kept to a minimum. A full
explanation of each subroutine and of the demonstration programs
as well as numerous application examples are contained in Wegener
and Spiekermann (1989).

==

Figure §. The 3D-workbox as wire-frame (a), as cube (b) and as open box with

a ramp Iinside (c¢).

APPLICATION EXAMPLES

Figures 9 to 12 show
examples of graphical re-
presentations produced
with the subroutine pack-
age in a variety of re-
search and student pro-
jects. For all represen-
tations individual pro-
grams calling the subrou-
tines were written, no
effort was made to stan-
dardize these programs
for a larger class of
problems.

Figure 9 contains an
example of an age pyramid
(a), a time series dia-
gram with different line
types (b), a three-para-
meter phase diagram (c),
a Lorenz curve (d) and
two applications of the
grid plotting program of
Figure 5, one to sampled
data (e) and one showing
a two-dimensional parame-
ter surface from a cali-
bration experiment (f).

Figure 10 contains
examples of maps: a base
map showing only =zone
boundaries and names (a),
a map of population den-
sities as grey-scale map
(b), a map showing net

T TS0 s

\‘\\‘\\\“‘\“\go‘,‘:;;/é‘;‘&&" Y
7/ P, \

S S Ss SR

Figure 6. Three-dimensional representations
of surfaces with raster scan technique (a) and
with grid plotting routine (b).

GKS Macros 1

GKS CONTROL MACROS

igks
cgks

PRINTER CONTROL MACROS

askprn(ips)

setprn(m,n)
m=0 n=1/2
m=1 n=1

VIDEC CONTROL MACROS

cls
clear
askvideo(m,nc)
m=7/15, nc=80/90
setvideo(m)
setcolor(ic)
inverse(n)
setattr(ir,ic,ia)
ia=1/7/8 (129/135/136 blinking)
ia=9/15/112 (137/143/240 blinking)
askcur(ir,ic) '
setcur(ir,ic)
cursor(ic)
setwrap(m)

OUTPUT CONTROL MACRO

pmode (pm)
pn="r'/'x" /"2’ /o'

POINT/LINE MACROS

getdot(x,y) /REAL function/
putdot(x,y,ici)
ici=0/1
putmk (x,y,mt,scf,ici)
mk=1/2/3/4/5/6/7/8/9
line(x1l,yl,x2,y2,1ci)
Tci=0/1/2/3/%
pline(n,x,y,lci)
circle(x,y,r,1ci)
ellipse(x,y,rx,ry,1ci)
circarc(x,y,r,al,bt,lci)
ellarc(x,y,rx,ry,al,bt,lIci)

AREA/FILL MACROS

paint(x,y,ici,ist,jst)
palygon(n,x,y,lci,ici,ist,jst)
ist=0/1/2/3
jst=0/1/2/3/4/5/6
box(x1,yl,x2,y2,1ci,ici,ist,jst)
frame(x1,y1,x2,y2,d,1ci,ici,ist,jst)
disk(x,y,rx,ry,lci,ici,ist,jst)

wedge(x,y,rx,ry,al,bt,lci,ici,ist,jst)
ring(x,y,rx,ry,d,al,bt,lci,ici,ist,jst)
tline(xl,yl,x2,y2,d,m,1ci,ici,ist,jst)

tpline(n,x,y,d,m,1ci,ici,ist,jst)
m=x.. 0/1
m=.xx 1/2/3 (4/5/6)

Initialize GKS
Close GKS

Inquire printer status byte

Initialize matrix printer
alpha 12/17 cpi, 6/8 1pi
graphics 120 dpi, 9 lIpi

Clear alpha screen

Clear graphics screen

Inquire video mode
alpha/graphics 80/90 cpl

Set video mode

Set colour code

Invert graphics screen

Set screen attribute at ir,ic
underline/normal/black
high-underline/high/inverse

Inquire cursor position

Position cursor at ir,ic

Set cursor attributes

Set line wrap

Set plot mode
replace/XOR/AND/OR

Inquire pixel

Draw point
black/white

Draw marker
J+/*/o/x/ofo/n/a

Draw line
black/solid/--/../.-

Draw polyline

Oraw circle

Draw ellipse

Draw circular arc

Draw elliptical arc

Fill area

Draw/fill polygon
hollow/solid/pattern/hatch
see demo3

Draw/fill box

Draw/fill frame

Draw/fill disk

Draw/fill wedge

Draw/fill ring

Draw/fill thick line

Oraw/fill thick polyline
ball/flash
round/flat/vertical (open)

Figure 7. GKS Macros reference card.

GKS Macros 2

TEXT MACROS

keybd()

inkey(n,chr)

getchar(ir,ic) /CHARACTER function/
putchar(ir,ic,chr)

write(x,y,txt)

wrte(ir,ic,txt)
text(x,y,ift,al,ht,xpf,spf,txt)
gothicb(x,y,spf,txt)
gothic8(x,y,spf,txt)

PICTURE MACROS

getpic(xl,yl,x2,y2,mpic,lpic,pic)
putpic(x,y,pic)
savepic(fn,pic)
loadpic(fn,pic)

HETAFILE MACROS

ometa(fn)
cmeta
rmeta(fn)

3D MACROS

workbox3d(vd,al,bt,scf,m)
window3d(x1,xr,yl,yr,zb,zt)
trans3d(x,y,z,xp,yp)
putdot3d(x,y,z,ici)
line3d(x1,yl,z1,x2,y2,22,1ci)
pline3d(n,x,y,z,1ci)
polygon3d(n,x,y,z,1ci,ici,ist,jst)
box3d(x1,yl,z1,x2,y2,22,1ci,ici,ist,jst)
dsort3d(m,np,ip,id,n,x,y,z)
surface3d(z)
grid3d(n,m,xa,xe,ya,ye,z)

DATE/TIME MACROS

date(iy,i
time(ih,i

)
s

im,id,iw
im, is,ihs)
RANDOM NKUMBER MACROS

rnd() /REAL function/
setrnd(i)
i=n/0

SORT MACROS

jsort(n,iz,ind)
rsort{(n,rz,ind)
csort(n,sf,ind)

GEOMETRY MACROS

angle(xl,yl,x2,y2)
s11(x1,yl,x2,y2,x3,y3,x4,y4,n,xs,ys)
slc(xl,yl,x2,y2,xm,ym,r,n,xs,ys,xt,yt)

DOS MACRO

dos(cmd)
cmd=command

Test keyboard buffer

Read keyboard buffer

Read character at ir,ic

Write character at ir,ic
Write text at x,y (ROM font)
Write text at ir,ic (ROM font)
Draw text at x,y (GKS fonts)
Draw text at x,y (GOTHIC6)
Draw text at x,y (GOTHIC8)

Read picture from screen
Write picture to screen
Save picture to disk
Load picture from disk

Open GKS metafile for output
Close GKS metafile
Read and execute GKS metafile

Establish/draw 3D workbox

Set 30 window

Transform 3D coordinates to 20
Draw 3D point

Draw 3D line

Draw 3D polyline

Draw/fill 3D polygon
Draw/fill 3D box

Depth sort of 3D polygons
Draw 3D surface of function z
Draw 3D grid of points z(n,m)

Inquire system date
Inquire system time

Random number generator
Initialize rnd
seed n/seed from time

Sort INTEGER numbers
Sort REAL numbers
Sort CHARACTER fields

Angle of line in radians
Intersection line/line
Intersection(s) line/circle

Execute DOS command or program
command or program name

Figure 8. GKS Macros reference card (continued).

a age b 3.75 4 Percent popuiation under 5 years

100
mmmms 07 §-3
aule 90 D - 15 4-12
7.50 4% nmes 05 (3-22
% o X 23-29
& fesale £X 30

surplus
5.

anle -
surplus «
3.
30
2
2.50 ™
0 == 1979 1975 1980 1985 1990 1995 2000
r T T T T [Tears
$000 4000 3000 2000 1000 0 1000 2000 3000 4000 5000
Inoer Suburds d 100
C Percent foreign population 1970
47 48 45 44 43 42 4 10 19 k) 37 18 Percent foreign population (988 (Model)
15 _¢ I3 L L L L £ 4 L i [
\ FRAES /\ 4 30 4
18 N\
\ /\48
12)¢ -
K Y 50
. K :
40
Cantral Area Quter Suburds
2t
22\ EES g 20 4
2 “ ‘Sﬂ a Concentration seasures ’// \\
AN A 2NN
24N B Wiee GINI COMC Pl ety :
Y vag .38 23.01 i i !
15 \ - 54,31 43.7§ 2 20 40 50 80 100
B 181417 §18 31912 SV 20 711 915 3131021 12828242 423 1S5
8 1614 9 617 724191211 102015182113 827 32228 328 48 113 2

f
0.9 j eseesy ““‘:‘:‘;;;;‘;‘;;‘;‘;‘;“;‘;‘;‘;““;“‘.;\‘“;““:““‘
0,34 “ ‘ ‘ “ ‘ ‘
2,91 - ‘ “““ “‘
i

Figure 9., Application examples: Age pyramid (a), time series diagram (b},
three-parameter phase diagram (c), Lorenz curve (d), grid display of sampled
data (e) and of two-dimensional parameter surface (f).

10

& I
\
A\t
A)
-
9 Hombruch
¢ 10 Uilgendortmnd
—_—_—— :; m 16 20 30 40 poprha

Net migration
r 1000 popuiation

R 20 v
(000 soves
mmagm SO0 noves

Application examples: maps of the urban region of Dortmund, West

Figure 10.
Germany, including a base map (a), a grey-scale map of population density (b),

maps showing net migrations as arrows between zones (c) or for each zone as
positive and negative bars (d) or comparing net migrations for one zone in

different years (e and f).

11

migrations as arrows between regions (c) or as zonal balance in
the form of bars indicating migration gains or losses (d). The
last two maps show net migrations flows for one particular zone
for two different years (e and f).

Two final examples show the output of programs designed to
support transport network analysis and digital terrain modeling.
Figure 11 shows a section of the Dortmund transportation network
(a) and the same section with buffers along each link (b). Figure
12 shows the interpolation of a surface from irregularly spaced
observation points through triangulation (a), contours (b and c¢),
grid points (b) to three-dimensional representation (d) using ACM
algorithm 626 (Preusser, 1984). These two applications also dem-
onstrate the restrictions imposed by the limited resoclution of
the microcomputer displays available.

Figure 11. Network analysis: a section of the Dortmund transportation net-
work (a) and with buffers along each link (b).

CONCLUSIONS

The present paper has demonstrated the feasibility and po-
tential of generating sophisticated computer graphics for urban
and regional analysis and planning using the GKS graphics stand-
ard embedded in Fortran on commonly available low-cost microcom-
puter hardware.

Its minimal hardware and software requirements facilitate
the application of this or similar program packages in planning
education and in decentralized work environments or in countries
where more expensive hardware and software is not available.

The limits of the hardware, on the other hand, in particular
the low resolution of present microcomputer displays, seem to re-
strict its application to relatively small planning problems, al-
though real-life planning problems are usually large and complex.
It remains to be seen if there is enough demand for analytical
tools at the level of complexity addressed in this package.

12

Figure 12. Digital terrain modeling: interpolation of a surface from irreg-
ularly spaced data points through triangulation (a), contours (b and c¢) to
three-dimensional representation (d).

Another point which is not at all clear is whether a graph-
ics packages requiring computing skills has a future in the pro-
fessional practice. This gquestion is of course related to the
lack of specialized planning software in the commercial market.
It is probably safe to say that programming skills will be re-
quired from the urban analyst at least as long as the market
fails to offer high-quality planning scftware that is easy to
use and still retains the flexibility necessary for the ever-
changing tasks of the planning practice.

A final question is related to the possibility of writing
software by people without the expertise of modern software de-
velopment. It may well turn out that, even if the original idea
for the software is a good one, the tasks of achieving and main-

13

taining high standards of reliability and of continually updating
the software to keep up with the state of the art and the chang-
ing hardware environment, are beyond the capacity of non-profes-
sional programmers.

REFERENCES

Coschi, G. and Schueler, J.B. (1985): WATFOR-77 User’s Guide IBM
PC with DOS. Waterloo, Ontario: WATCOM Publications.

Coschi, G. and Schueler, J.B. (1986): WATFOR-77 Language Refer-
ence. Waterloo, Ontario: WATCOM Publications.

Encarnacao, J.L. and Strasser, W. (1988): Computer Graphics. Min-
chen: Oldenbourg (in German).

Enderle, G., Kansy, K. and Pfaff, G. (1987): Computer Graphics
Programming. GKS - The Graphics Standard. Berlin/Heidelberg/New
York: Springer.

Preusser, A. (1984): ALGORITHM 626. TRICP: A Contour Plot Program
for Triangular Meshes. ACM Transactions on Mathematical Software
Vol. 10, No. 4, pp. 473-475.

Voglewede, J. (1987): FORTRAN Perspectives. PC Tech Journal, June
1987, pp. 92-109.

Wegener, M. and Spiekermann, K. (1989): Mikrocomputergraphik:
Eine Unterprogrammsammlung fiir FORTRAN und GKS (Micro Computer
Graphics: A Subroutine Library for FORTRAN and GKS). Berlin/Hei-
delberg/New York: Springer (in German).

Yach, D. (1986): WATCOM GKS Tutorial and Reference. Waterloo,
Ontario: WATCOM Publications.

14

