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1. Introduction

Integrated models of urban land-use and transport capture the two-way interaction between
location and mobility decisions of households and firms over time. Because of the slowness
by which the physical stock of cities, such as residences and commercial and industrial
buildings, change, these models typically cover a twenty- or thirty-year period. To implement
feedback between land use and transport, they have to run their land-use parts and their trans-
port parts once in each simulation period.

This puts high demands on the speed by which the transport models embedded in land-
use transport models are executed. Execution times of several hours, which may be acceptable
if the transport model is applied only once, are prohibitive if it is to be executed once very
year in a thirty-year simulation. This constraint is in conflict with the current tendency to
make urban travel models more disaggregate or even entirely microscopic down to the indi-
vidual traveller, which typically leads to even longer execution times even with fast parallel
computers. A significant part of the computing time requirements of highly disaggregate
transport models is due to the large number of iterations required to achieve user-optimal
equilibrium in trip assignment.
 One way out of this dilemma is to review the rationale underlying these iterations.
Obviously, reality does not iterate but produces a consistent sequence of trip patterns over the
twenty-four hours of each day without trials. Why is it not possible to follow reality and pro-
duce consistent travel flows without iteration?

This paper outlines a methodology to model activity patterns, trips and trip chains,
destination, mode and route choice of individual travellers in urban regions by time of day,
including within-day and period-to-period adjustment of behaviour, by microsimulation with-
out iteration. The presentation is illustrated by a first simulation experiment using the urban
region of Dortmund as a study region.

2. Problem statement

Mathematical models for forecasting urban travel flows originated in the 1950s in the United
States pioneered in the Chicago Area Transportation Study (CATS). The paradigmatic urban
travel model consisted of four steps: (i) In the trip generation step the volume of trips origi-
nating in each travel analysis zone was estimated from socio-economic zonal data using sta-
tistically derived trip rates. (ii) In the trip distribution step these trips were allocated to possi-
ble trip destinations as a function of socio-economic characteristics of destination zones, or
trip attractions, and the travel times or generalized cost between them. (iii) In the modal split
step these origin-destination flows were allocated to available travel modes as a function of
the relative attractiveness of these modes, mostly expressed by their travel-time ratio. (iv) In
the trip assignment step these model flows were assigned to the links of the modal networks.
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For the trip distribution step, the gravity model was used as the first spatial interaction
(or in short SIA) model. Its straightforward physical analogy has later been replaced by better
founded formulations derived from statistical mechanics (Wilson 1967) or information theory
(Snickars and Weibull 1976), yet even after these substitutions the SIA model did not provide
an explanation for the spatial behaviour modelled. Only later it became possible (Anas 1983)
to link it via random utility theory (Domencich and McFadden 1975) to psychological models
of human decision behaviour (Luce 1959).

It was soon becoming apparent that it was not sufficient to apply the four steps of the
paradigmatic model sequentially. Depending on the flows assigned to the road network in the
trip assignment step, travel times on congested links increased and became inconsistent with
those used in the trip distribution and modal split steps. This inconsistency led to the defini-
tion of user-optimal network equilibrium (Beckmann et al. 1956), a state in which the pattern
of flows in the network reflects the generalized costs on its links, which is equivalent to
Wardrop's (1952) condition that each used route between each origin and each destination has
the same generalized travel cost and no unused route a lower cost .

There exist essentially three methods to achieve user-optimal network equilibrium
through multiple iteration of trip distribution, modal split and trip assignment and averaging
after each iteration (Boyce et al. 1994): the method of successive averages (MSA) over multi-
ple all-or-nothing assignments, user-optimal assignment using Frank-Wolfe linearisation and
all-or-nothing assignment using partial linearisation following Evans (1976). In all three
methods travel times or generalized travel costs of each link are adjusted using speed-flow
relationships (capacity restraint). The weights used for each iteration in the averaging are cho-
sen to be the best in each iteration or pre-determined as 1/n in the nth iteration (Powell and
Sheffi 1982). The iterations are largely responsible for the generally long computing times of
state-of-the-art travel forecasting models. The problem prevails despite recent advances in
assignment algorithms, such as the origin-based assignment by Bar-Gera (1999).

Things are getting worse with the current tendency to make urban travel models more
disaggregate or even entirely microscopic down to the individual traveller in order to models
multipurpose unimodal and intermodal trip chains and time of day of trips, the interaction
between activity and mobility patterns of household members, new lifestyles and work pat-
terns, such as part-time work, telework and teleshopping, the interaction between travel de-
mand, car ownership and residential and firm location, and environmental impacts of trans-
port such as traffic noise and exposure to air pollution. Disaggregate travel models aim at a
one-to-one reproduction of spatial behaviour by which individuals choose between mobility
options in their pursuit of activities during a day (Axhausen and Gärling 1992; Ben-Akiva et
al. 1996). Activity-based travel models start from interdependent 'activity programmes' of
household members of a 'synthetic population' (Beckman et al. 1995) and translate these into
home-based 'tours' consisting of one or more trips. Activity-based travel models do not model
peak-hour or all-day travel but disaggregate travel behaviour by time of day, which permits
the modelling of choice of departure time. There are also disaggregate traffic assignment
models based on queueing or cellular automata approaches, e.g. in the TRANSIMS project
(Barrett et al. 1999; Nagel et al. 1999), which reproduce the movement of vehicles in the road
network with a level of detail not known before.

However, microscopic disaggregation typically leads to even longer execution times
even with fast parallel computers. As with aggregate models, a significant part of the com-
puting time requirements of highly disaggregate transport models is due to the large number
of iterations required to achieve user-optimal equilibrium in trip assignment. There are ap-
proaches to model within-day and day-to-day adjustment of behaviour by modelling dynamic
network equilibrium (e.g. Bernstein and Friesz 1998; Nagurney and Zhang 1998). These
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highly sophisticated methods, however, suffer from even larger computing time problems
through iteration. Long computing times have also been a serious problem for TRANSIMS.
 These long computing times become even more of a problem if the travel forecasting
model is combined with an integrated urban land-use transport model. These models capture
the two-way interaction between location and mobility decisions of households and firms over
time. Because of the slowness by which the physical stock of cities, such as residences and
commercial and industrial buildings, change, they typically cover a twenty- or thirty-year pe-
riod. To implement feedback between land use and transport, they have to run their land-use
parts and their transport parts once in each simulation period. Moreover, these models are
increasingly becoming more disaggregate to deal with aspects of urban form, travel demand
management and environmental impacts (Spiekermann and Wegener 2002). This puts high
demands on the speed by which the transport models are executed. Execution times of several
hours, which may be acceptable if the transport model is applied only once, are prohibitive if
it is to be executed once very year in a thirty-year simulation.

One solution to this problem would be to develop a travel forecasting model that does
not require iteration. Obviously, reality does not iterate but produces a consistent sequence of
trip patterns over the twenty-four hours of each day without trials. Why is it not possible to
follow reality and produce consistent travel flows without iteration?

A first step towards this goal is to review the rationale behind the concept of user-
optimal network equilibrium. There are good reasons to put doubts on the half a century old
proposition that user equilibrium is the best representation of travel behaviour. After all, the
basic assumption underlying user equilibrium, complete rationality and complete information
of all travellers, is highly unrealistic. Instead, many travellers often find themselves trapped in
no-return situations, such as traffic jams, wrong lanes, no-turn intersections, train delays or
missed connections they would have avoided if they had had prior complete and timely in-
formation. Modelling travel behaviour then becomes the art of modelling decision making
under uncertainty with incomplete information, short-term adjustment and trial-and error with
a significant proportion of routine and habitual behaviour. However, it can be assumed that
travellers apply knowledge from previous experience. This can be exploited in a modelling
environment in which the transport model is applied recursively in each simulation period.

3. Model framework

The urban travel model envisaged is part of long-term effort to develop a microsimulation
model of urban land use, transport and environment (Wegener and Spiekermann 1996; Salo-
mon et al. 2002; Moeckel et al. 2002) based on the existing land-use transport model of the
urban region of Dortmund (Wegener 1998). Parts of the planned model are presently being
implemented in the project ILUMASS (Integrated Land-Use Modelling and Transportation
System Simulation) funded by the German Federal Ministry of Education and Research. The
study region for tests and first applications of the model is the urban region of Dortmund.

The model consists of a number of microsimulation modules. A microsimulation
module is a programme unit that executes one elementary process (a choice, a transition or a
policy) and stores the result in the common micro database. Each microsimulation module has
defined input and output interfaces. Co-ordination between the modules is facilitated by a co-
ordinator or scheduler programme. The rows and columns of Figure 1 represent microsimula-
tion modules ordered by increasing speed of change:

Transport infrastructure and buildings represent the slowest kind of change; their con-
struction takes many years, and their lifecycle is counted in decades. Firms and households
have also lifecycles of several years but are more easily established or dissolved. Firms and
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households change their location several times during their life yet even more frequently ad-
just their vehicle fleets to changing needs. Whereas all these changes are counted in years,
logistics and household activities change from hour to hour during a single day. The fastest
urban processes are goods transport and travel. They adjust in response to events in a matter
of minutes. Environmental processes partly reflect the effects of human activities without de-
lay but some have long-term consequences.

The microsimulation modules interact in various ways with each other. Figure 1 shows
the direct interactions between microsimulation modules represented in the model.

Figure 1.  Interactions between microsimulation modules

Some of these interactions are highly delayed, i.e. take their time to work their way through
the system. For instance, increasing demand for office space or housing will result in new
office space or new housing only after several years because of long planning and construc-
tion periods. Other impacts are much faster. For instance, dwellings vacated by households
enter the supply of available housing after a few weeks. Still other impacts are almost imme-
diate, such as driver response to congestion. This variety of response speeds requires that the
exchange of information between the microsimulation modules is very efficient. This is
achieved by the common micro database.
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3.1 The travel microsimulation module

The travel microsimulation module presented here is an attempt to combine several partially
conflicting objectives:

- to model mobility decisions in a microscopic perspective in order to capture aspects of be-
haviour that are that are crucial for achieving sustainable urban transport, such as multipur-
pose unimodal and intermodal trip chains and time of day of trips, the interaction between
activity and mobility patterns of household members, new lifestyles and work patterns, such
as part-time work, telework and teleshopping, the interaction between travel demand, car
ownership and residential and firm location, and environmental impacts of transport such as
traffic noise and exposure to air pollution;

- to take into account that travellers have different travel preferences and perceptions of the
transport system based on incomplete information about its current state, that they are un-
certain about unexpected events, such as accidents, that they frequently find themselves
trapped in situations they would have avoided if they had had prior information and that
they base their travel decisions on previous experience that my be outdated or on habits and
routines that are insensitive to current information;

- to reproduce the dispersion of mode and route choice that result from that diversity of pref-
erences, incomplete information, uncertainty, trap situations and habits,

- to model both short-term adjustment, such as change of departure time or en-route change
of destination, mode or route as well long-term learning based on prior experience;

- to develop efficient algorithms for activity generation, journey and trip generation, destina-
tion, mode and route choice and assignment that does not require extensive iterations.

To achieve these objectives, the stochastic microsimulation already proposed by Burrell in
1968 is applied. However, unlike the procedure proposed by Burrell, congestion is taken into
account by using generalized link travel costs based on the network link flows of the previous
simulation period. The travel microsimulation module models for each member of each
household the selection of an activity programme and, following that, a departure time for
each tour and a departure time, destination, mode and route for each trip (see Figure 2):

- Select household. In the first step a household is selected for processing from the list of
households. Each selected household is defined by its household attributes and the personal
attributes of its members. The household attributes include its residential location. A loca-
tion in the model is a micro location, i.e. street address, geographical co-ordinates or raster
cell of 100 x 100 m size.

- Select person. Next the first household member is selected. For each working person in the
household the location of the workplace is known. For school children and university stu-
dents the location of the school or university is known.

- Select activity programme. Depending on the personal attributes of the household member,
i.e. age, sex and occupation, a daily activity pattern is selected from a catalogue of activity
patterns. A daily activity pattern is defined as a schedule of tours.

- Select car ownership and availability. Depending on household and personal attributes it is
determined whether the person has a car at his or her disposal.

- Select tour departure time. The first tour of the activity programme is selected. The depar-
ture time is determined as a random variation of the scheduled departure time.
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Figure 2.  Microsimulation of travel behaviour

Start

Select person
(age, sex, occupation)

Select activity programme
(pattern of tours)

Select car ownership and
availability

Select tour departure time
(0-24 h)

Select trip departure time
(0-24 h)

Select destination*
(micro location, logit)

Select mode*
(logit)

Select route
(stochastic shortest route)

Move person through network
by 10-minute time interval

Update link travel times
by 10-minute time interval

Return

Lo
ng

-te
rm

 a
dj

us
tm

en
tSh

or
t-t

er
m

 a
dj

us
tm

en
t

Select household
(size, income, micro location)

 Another
      trip?

 Another
household?

Yes

No

Yes

Another
    tour?

Yes

Another
  person?

Yes

No

No

*  Look ahead
    to next trip(s)

No



7

- Select trip departure time. The first trip of the tour is selected. The departure time is deter-
mined as a random variation of the scheduled departure time.

- Select destination. The destination of the trip is selected by logit choice. The locations of
destinations are micro locations as above. Generalized costs of travel to the destinations are
calculated as the logsum of stochastic shortest routes (see below) of relevant modes. Rele-
vant modes are walk, cycling, public transport and car (if available, see above). For work,
school and university trips the destinations are already known.

- Select mode. For the selected destination, mode choice is performed by logit choice based on
the generalized costs of stochastic shortest routes (see below).

- Select route. For the selected mode the stochastic shortest route is selected as route. Sto-
chastic shortest route is the shortest route with a random disturbance term added to each link
generalized cost and each waiting/transfer time in the public transport network.

- Move person through network. Each person travelling through the network is recorded on
each traversed link by 10-minute time interval.

After each trip the next trip of the route, if any, is selected. After each route, the next route, if
any, is selected. After each person, the next person, if any, is selected. After each household,
the next household, if any, is selected.

There are two ways of selecting the next trip. One intuitively appealing way is to start in
the early morning hours with an empty network, process trips in the order of their departure
time, that is spatially randomly, and after each trip update the generalized travel cost of all
traversed links. In this way the gradual filling up of the network over the day is reproduced.
This would be a microscopic version of the incremental loading assignment in use prior to the
development of user-equilibrium assignment algorithms. If, however, it is assumed that trav-
ellers use their prior experience about network conditions when making travel decisions, an
even simpler procedure can be applied. In this case the assignment does not start with free-
flow generalized link costs but with the higher link travel costs of the loaded network of the
previous simulation period. It is then not necessary to process trips in the order of their de-
parture time. Only after all tours and trips have been executed, the travel times of all traversed
road links in each ten-minute interval of the day are updated to account for congestion; how-
ever, this information will be used only in the next simulation period. Representative travel
times and generalized costs between zones (required for accessibility calculations in the land
use model) are calculated on the basis of shortest routes with updated travel times.

If during a trip a significant amount of congestion is encountered, short-term adjustment
resulting in a postponement of the trip or a change of mode or route may occur. However,
only changes of departure time and mode that can be made en route are implemented. Long-
term adjustment of travel behaviour, such as going to work later or buying a monthly public
transport pass, are based on the generalized costs of the network in the previous simulation
period. Generalized costs are a combination of travel time and travel cost and can be different
for each type of traveller to take account of the diversity of travel preferences.

Special provisions are necessary when no prior information is available as in the first
simulation period or in the case of large infrastructure changes. In the first simulation period
either one aggregate user-equilibrium assignment using the Evans algorithm or one microas-
signment iteration starting from medium-flow generalized link travel costs may precede the
actual assignment. Similarly, large infrastructure improvements, such as new road links, may
be introduced with medium-flow generalized link travel costs representing the most likely
expectation of travellers.

It is hoped that microassignment without iteration will produce a similar distribution of
trips across destinations, modes and routes as user-optimal assignment with iteration. Total
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user benefit should be less due to the effects of uncertainty, incomplete information, trial and
error and habitual behaviour. It will be an interesting task to examine the degree of sub-
optimality and how the simulated travel behaviour compares to observed behaviour and the
results of travel models based on user-optimal network equilibrium.

3.2 A first test

As a first test of the proposed method, iteration-free microassignment was applied to peak-
hour car trips in the Dortmund urban region and compared with the results of an user-optimal
equilibrium assignment of the aggregate transport component of the existing land-use trans-
port model of the Dortmund urban region.

The existing transport model applies the Evans algorithm to arrive at user equilibrium of
trip generation, car ownership, trip distribution, modal split (walk-cycle, public transport, car)
and route choice (Wegener 1986). Normally eight iterations are performed, but for this exer-
cise the number of iterations was increased to 20. A simplified version of the model with 36
zones and 1800 network links was used; in the final version 200 000 microlocations (grid
cells) and 8000 network links will be used.

The resulting origin-destination matrix of peak-hour interzonal car trips was then as-
signed to the links of the road network on a car-by-car basis. For each car trip, a stochastic
shortest route to its destination was determined using a shortest-route algorithm. For this the
generalized link travel costs of the aggregate user-optimal equilibrium assignment produced
by the Evans algorithm described above were used – in the final model the travel costs of the
loaded network of the previous simulation period will be used.

During the shortest-route search, these generalized link travel costs were disturbed by an
uniformly disturbed random increment of decrement of up to ten per cent. A 'once-through'
shortest-route algorithm, in which the nodes already reached but not further processed (the
'candidates') are temporarily preserved in the 'candidate list' in the order of their travel cost
from the origin node (and are hence processed only once), made sure that each link cost was
disturbed only once. Only route changes, no other behavioural responses, such as change of
departure time or change of mode, were yet implemented nor were time intervals or microlo-
cations considered – this will be left to future experiments.

In Figure 3 the resulting link flows of the microassignment are compared with the link
flows generated by the aggregate user-equilibrium assignment with the Evans algorithm. It
can be seen that the majority of link flows produced by the two methods are very similar, with
a few significant deviations that need further investigation by comparison with observed link
flows. It should be noted that a perfect fit of the two link flow distributions cannot be ex-
pected – and is not even desirable if the hypothesis holds that user equilibrium is not the best
approximation of actual travel behaviour.

4. Conclusions

This paper outlined a methodology to assign individual trips generated in a microscopic ac-
tivity-based travel forecasting model to a multimodal transport network without iteration. The
rationale of the method rests on the assumption that travellers have only limited information
about the current state of the network and that they base their travel decisions on prior knowl-
edge from earlier experience. This assumption challenges the common assertion that user-
optimal equilibrium represents the best approximation of travel behaviour.
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Figure 3.  Microassignment v. assignment using the Evans algorithm

The iteration-free nature of the approach makes it particularly suitable for integrated
models of urban land use, transport and environment (LTE), which, as it was indicated, are
increasingly becoming more disaggregate. Ideally, the transport component of a microscopic
LTE model should also be microscopic but this conflicts with the need to have a very fast
transport model to implement feedback between transport and land use. The proposed itera-
tion-free microassignment method promises to be a solution to this conflict.

Nevertheless, before this becomes reality, several problems have to be solved. At a
conceptual level, the question to what degree transport networks are in equilibrium needs to
be investigated empirically. This will require new approaches of analysing travel choice be-
haviour from a cognitive-science perspective. In addition, a number of technical problems
have to be addressed. Even iteration-free assignment is too slow unless efficient methods to
calculate individual shortest routes between one origin and one destination (not trees) are de-
veloped. Also the short-term adjustment conceptualized in the algorithm will have to be to
implement in a theoretically sound and at the same time efficient manner. Finally, new meth-
ods of calibrating and validating the model against observed travel data will need to be devel-
oped.
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